If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50w^2-15w+1=0
a = 50; b = -15; c = +1;
Δ = b2-4ac
Δ = -152-4·50·1
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-5}{2*50}=\frac{10}{100} =1/10 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+5}{2*50}=\frac{20}{100} =1/5 $
| 3x-60=-6x+66 | | 1.9y=5.7 | | 32+4c=18 | | 3u^2+34u+11=0 | | 0.90(x+60)+0.50x=103 | | -7x-52=58-12x | | 8*(5x–3)–11*(3x+7)=102 | | 3x^2-6x=504 | | (3x+4)(x-4)=0 | | -86-6x=-11x+64 | | 470÷x=47 | | -86-6x=-11x+63 | | 5/2x+1/2x=3x+5/2+5/2x | | -65+3x=-8x+67 | | 3.5g+6=27 | | (x-2)/5=10 | | 2s^2-11s+14=0 | | -15=2g-7 | | 3/2(x+4)+1=1/4(x-3) | | -7x-73=71+x | | 4d^2+13d+10=0 | | -2.45=(t-(5)(9.8))/(5) | | 4q^2+44q+121=0 | | 3x+60=18x | | x=0.6464 | | x-x-12=180 | | 0.6×n=6 | | G(x)=-4x-9 | | 31-x=20 | | 2.3a-30=-7.7a+10 | | 3(k+4)/7=1 | | 9h^2-12h+4=0 |